
ACER: An AST-based Call Graph Generator
Framework

Andrew Chen
Computer Science Department

William & Mary
Williamsburg, USA
achen08@wm.edu

Yanfu Yan
Computer Science Department

William & Mary
Williamsburg, USA
yyan09@wm.edu

Denys Poshyvanyk
Computer Science Department

William & Mary
Williamsburg, USA

dposhyvanyk@wm.edu

Abstract—We introduce ACER, an AST-based call graph
generator framework. ACER leverages tree-sitter to interface
with any language. We opted to focus on generators that operate
on abstract syntax trees (ASTs) due to their speed and simplicitly
in certain scenarios; however, a fully quantified intermediate
representation usually provides far better information at the cost
of requiring compilation. To evaluate our framework, we created
two context-insensitive Java generators and compared them to
existing open-source Java generators.

Code: https://github.com/WM-SEMERU/ACER
Index Terms—Call Graph, Static Analysis, Software Frame-

works

I. INTRODUCTION

Long-standing research endeavors in static call graph gen-
eration have made significant contributions to the field of
program analysis over the years. Call graphs can be used
in a wide variety of areas: from critical tasks like compiler
optimization [1] and detecting security vulnerabilities [2], to
useful applications such as code profiling [3], refactoring [4],
and navigation [5]. Formally, a call graph is defined as a
directed graph G = (V,E) wherein each vertex v ∈ V
represents a method, and an edge e = (v1, v2) ∈ E signifies
that the method v1 invokes the method v2 within its body.

class Bar {
void bar() {}

}
public class Foo {

Bar b = new Bar();
void method1(Bar b) {

b.bar();
}

}

Fig. 1: For jargon demonstration purposes.

In call graph terminology, an invocation is known as a
call site. There exist two call sites in Figure 1: new Bar()
and b.bar(). The main operation of call graph generators
lies in call site resolution — the process of identifying the
fully quantified method(s) a call site corresponds to. In Java,
a method is considered fully quantified when its package,

enclosing classes, name, and argument types are all taken into
account.

A call site’s left hand side (if it exists) is referred to as the
receiver. In b.bar(), the receiver is b. Call containers are
nodes that lexically contain call sites. There are two call con-
tainers in the figure: class Foo and void method1(Bar
a).

Call graph generators vary mainly by the following three
parameters: algorithm, source format, and scope of analysis.
We list examples in Table I.

Paramters Examples
Algorithm NR, CHA, SCHA, RTA, k-CFA
Scope of Analysis Application-only, Library-only, In-

between, Full software
Source Format Raw source, AST, IR

TABLE I: Generator parameters and examples.

Generators first differ drastically by their algorithm. Grover
et al. [6] established a taxonomy for call graph algorithms over
twenty years ago, which Tip et al. [7] broadly categorized into
three levels:

1) Simple and few-passed, such as Name-based Resolu-
tion (NR) and Class Hierarchy Analysis (CHA). NR
disregards receivers and resolves call sites using solely
the method name. CHA, on the other hand, considers
receivers and even their subtypes to support polymor-
phism.

2) Context-insensitive but incorporates some points-to anal-
ysis. Examples include Variable Type Analysis (VTA)
and Andersen-style Pointer Analysis (APA) [8].

3) Context-sensitive, exemplified by k-CFA (k-Control
Flow Analysis), where k means to utilize the last k call
container contexts.

Call graph generators also vary in their scope of analysis, the
part of the full software analyzed. By full software, we mean
the application source plus its library dependencies. There are
four levels of scope of analysis (from narrow to broad):

1) Application-only: Only includes edges between applica-
tion methods.

ar
X

iv
:2

30
8.

15
66

9v
1 

 [
cs

.S
E

] 
 2

9 
A

ug
 2

02
3

https://github.com/WM-SEMERU/ACER


2) Library-only: While libraries by themselves could just
be regarded as applications, Reif et al. introduced al-
gorithms dedicated to libraries [9]. The key distinction
is that libraries could be analyzed from the user’s
perspective and assume certain private methods to be
closed off. This constructs a smaller set of entry points
and thus a more precise graph.

3) In-between: This contains application-only edges and
library methods invoked in application code [10].

4) Full-software: This contains in-between edges and in-
cludes library methods invoked in library code.

Lastly, generators differ by their source format. Source-
based generators use the raw source files while AST-based
generators have access to the abstract syntax trees. The choice
of algorithm is tied with the source format — source-based
generators are likely to implement the simplest NR algorithm
because extracting information from unstructured raw code
is hard and unscalable. Examples of source-based generators
include the internal utility within Doxygen [11] and this Perl-
based multilingual generator [12]. Examples of AST-based
generators are the popular Python generators [13] [14], which
operate on the outputs of the ast and symtable modules.

Additionally, there exist IR-based generators, which operate
on some internal representation (IR) created during compi-
lation. Typically, only statically-typed languages have IRs.
IRs deliver information that neither raw sources nor ASTs
directly provide — the most important data being fully-
qualified functions. Since a call graph’s vertices are just fully-
resolved functions, the construction of a sound call graph from
IR is simple (but not trivial due to polymorphism) because IR
has already resolved the functions. AST-based generators, on
the other hand, need to implement resolution logic.

Examples of IR include JVM bytecode [15] and the fully-
resolved syntax tree outputted by Clang-based compilers dur-
ing semantic analysis [16]. We consider Clang’s rich tree to
be IR and no longer just an AST. Tools that generate IR
usually require the source to be compilable — a program’s
dependencies thus must be pulled in and built. Ideal and
error-resilient tools like Roslyn [17] make exceptions —
they can generate the IR without building the dependencies
because they resolve all resolvable entities and simply flag
the unresolvable ones. On the other hand, most tools like
Clang AST and GCC [18] either throw or remove unresolvable
entities.

As an aside, languages that can compile to JVM bytecode
can get call graph generators “for free” through bytecode
analysis frameworks WALA [19] and Soot [20]. However,
the implementation details matter greatly — JVM-hosted im-
plementations of Groovy, Clojure, Python, and Ruby produce
very unsound call graphs due to dynamic translation schemes
[21].

Although IRs contain more useful data than ASTs, we still
build our call graph framework based on AST for the following
reasons:

1) Compile-free: Most IRs can only be generated if the
source is compilable, a restriction that AST-based gen-

erators do not impose. Further, IR compilation may com-
pute information irrelevant to generators. Consequently,
AST-based generators theoretically perform faster.

2) Generalizable: Most languages can be parsed to an
AST while only some statically-typed languages have
compilers that output rich, fully-resolved IRs.

3) Synergizes with the application-only scope: If the goal
is to generate application-only edges, there’s no need
to consider the dependencies. AST-based generators
complement this by operating directly on ASTs from ap-
plication source. Conversely, IR-based generators must
take into account the dependencies, as most IRs can only
be produced when the entire software is compilable.

We have outlined the key generator parameters and provided
reasons for using AST-based generators. We now turn to the
focus of the paper — how to construct AST-based generators.

The first piece of our approach is the powerful tree-sitter
[22] library. Tree-sitter is both a parser generator tool and
an incremental parsing library. It provides parsers for all
popular languages and a common interface to interact with
the parsers and their concrete syntax trees outputs. Though
the common interface is written in C, tree-sitter provides
additional language-bindings — we use the Python binding.

The second piece of our approach consists of language-
agnostic components and utilities. These abstract the shared
logic common to generators across various algorithms, scopes,
and languages. These components are detailed in section III.
Together, these two pieces form the backbone of our frame-
work, ACER, designed to simplify the development of call
graph generators.

Here are our main contributions:
1) Introduced ACER, an AST-based Callgraph GEnerator

FRamework.
2) Provided a taxonomy for generator design choices and

document implementational challenges.
3) Developed and evaluated a single NR and a single SCHA

(Simple CHA) AST-based Java generator using ACER.

II. BACKGROUND AND RELATED WORK

In the last section, we introduced the main call graph
parameters: algorithms, source formats, and scope of analysis.
In addition to these main traits, there exist subtle details like
reachability. In this section, we expand on all parameters and
discuss the challenges in implementing them.

A. Algorithm

An advanced call graph algorithm builds upon a simpler one
by either pre-caching supplementary structures or monitoring
additional runtime data. High recall and soundness is easier
to achieve while high precision demands significantly more
computational power [7].

As previously mentioned, the source format is tied inti-
mately with the algorithm. The Java bytecode IR, if interpreted
directly, encourages an algorithm that is more precise than NR
but less sound than CHA. Surprisingly, four out of the six most
popular Java generators use this direct interpretation and thus



do not fully support CHA. We illustrate the difficulty of fully
supporting CHA in Figure 2.

class A { void method() {}; }
class B extends A {}
class C extends B {}

class Bar {
void foo(A a) { // Could be A, B, C

a.method();
}

}

Fig. 2: Liskov’s substitution principle [23] in play.

The call site a.method(), in JVM bytecode, is
represented as 1: invokevirtual #2 // Method
A.method:()V. A simple, direct generator deduces
the edge from this information alone, thereby including
only the edge from Bar.foo → A.method. However,
polymorphism also allows objects of type B and C to be
passed into foo. Thus, sound analysis must include the
additional edges Bar.foo → B.method and Bar.foo →
C.method.

To support CHA, the generator must pre-cache a class
hierarchy. After the type of a receiver is calculated, the
generator considers the receiver to inhabit any subtype of the
type calculated. To support VTA and k-CFA, the generator also
need to consider intraprocedural assignments and data flow.

B. Handling Language Features

Practical call graph generators abiding by the same al-
gorithm and scope of analysis can still differ due to the
attention to details [24]. Some Java generators might not regard
static initializer blocks as call containers, or disregard default
interface methods. Conversely, some Python generators may
not handle higher-order functions and iterators. In the last
subsection, we also touched on the importance of handling
polymorphism, which is addressed by building and using a
class hierarchy.

C. Scope of Analysis

Earlier, we mentioned that AST-based generators synergize
with application-only scope. However, for broader scopes
starting from in-between, IRs are preferred because most IRs
compile the libraries by default.

As a side note, what Karim et al. [10] regards as
“application-only” is what we consider as “in-between”. Their
framework, CGC, parses just the structural information of the
libraries to efficiently include edges from application to library
and vice versa.

An additional parameter in the realm of scope is reachabil-
ity. The most sound analysis considers all methods as potential
entry points to handle potential multi-threading [9]. Precise
generators may consider a smaller set of entry points (the
singleton set of just the main method).

D. Ambiguity Problems

Application-only, AST-based generators face ambiguity
problems. Because IRs come from compilation, they have
fully-resolved all entities. But, application-only AST-based
generators can never fully resolve because they do not have
access to the library sources. We illustrate this ambiguity in
Figure 3. For a reasonable implementation, methods in the

import java.util.*;

class Bar {
int add(int a, int b) {...}
int add(float a, float b) {...}
void foo(List<?> l1, List<?> l2) {

int sum = add(l1.size(), l2.size());
}

}

Fig. 3: Without library analysis, we do not know the type of
l1.size() and l2.size(). So, we can at best return all
methods named add with two arguments.

figure should only aim to be identified by their package, class,
method names, and the number of arguments, which creates
unnecessary edges.

In-between scoped and AST-based generators like PyCG do
not face this problem. PyCG uses importlib to attempt to
resolve library definitions.

III. TOOL DESCRIPTION AND INTERNALS

Fig. 4: Call graph Generation Flow. Preprocessor and Gener-
ator are user-implemented.

In this section, we describe the two essential classes of
ACER: Preprocessor and Generator. We also show how
ACER can be used to implement a hypothetical, application-
only, AST-based, and fully-typed CHA Java generator. Gen-
erators built using ACER are by default confined to ASTs
for their source format and initiate their scope of analysis at
the application-only level. The algorithm, reachability, and the
treatment of language features can be freely explored.

Users create new generators by extending the Preprocessor
and the Generator and implementing a handful of abstract
methods. Internally, we make use of strict type hints and
generics to guide implementation.

Preprocessor

The sole purpose of the Preprocessor is to cache lookup
structures that the Generator utilizes. In this section, we first



describe the inputs and outputs of the Preprocessor. Then,
we give a high level description of our CHA generator’s
Preprocessor implementation.

Preprocessor first loads the tree-sitter libraries: The C run-
time and the input, language-specific parser. Preprocessor then
parses the input source files into tree-sitter trees. These trees
are composed of tree-sitter Nodes, which contain information
like node type, text, and pointers to parent and children.

Provided with the roots of these trees, the Preprocessor then
produces its outputs. These outputs are the desired lookup
structures. The Preprocessor class has two abstract methods,
which mandates the constructions of the two following struc-
tures:

1) method_dict: A mapping between unique
method keys to their method bodies (tree-
sitter Node objects). Our Java CHA generator
creates the method_dict by first locating all
nodes of types method_declaration and
constructor_declaration. From these nodes,
the generator navigates upwards to locate their enclosing
class and package for full resolution.

2) unique_dict: A cache between non-unique keys to
unique keys. The unique_dict exists due to the
application-only ambiguity problem described in sub-
section II-D: Call sites can not always resolve their
argument types and should instead be identified by their
argument count, but this introduces plurality which we
keep track of through unique_dict.

While every Preprocessor must cache method_dict and
unique_dict, advanced algorithms require more structures
to be cached. Our Java CHA Preprocessor builds two addi-
tional structures:

1) package_importables: Contains the mapping
from package to its exports (e.g., fully quantified classes,
interfaces, and enums). This aids full type resolution.

2) class_cache: Contains the mapping from each class
to its fields, subclasses, and method signatures. The
cached fields and method signatures help resolve com-
plex receivers. The cached subclasses mappings effec-
tively form a class hierarchy, which the generator uses
to handle polymorphism.

Both of these structures are created in a similar manner to
how method_dict was created — a parallelizable operation
that runs on each file. All of these structures are then passed
to the Generator.

Generator

The Generator creates the call graph from the specified
source files. Similar to the previous section, we first describe
the I/O behavior of the Generator. Then, we discuss the
internal flow of the Generator before concluding with how
we can implement the hypothetical CHA Generator.

The inputs to the Generator are the source files, entry
points, and the Preprocessor results. By default, the entry
points are all methods (the keys of method_dict). Users

can narrow down these entry points; for example, they can
filter out methods whose names are not “main”.

We now turn to explaining the generation flow, summarized
by the pseudocode in algorithm 1:

Algorithm 1: Generation Flow
Input: Preprocess Results P , Entry Points EP
Data: AnalysisDeque
Output: Call graph G(V,E)

1 initializeDeque(EP )
2 visited = empty set()
3 while AnalysisDeque.not empty() do
4 if call site.id ∈ visited then
5 continue
6 end
7 visited.add(call site.id)
8 next contexts = resolve(context, call site)
9 foreach context ∈ next contexts do

10 call container = context.call container
11 call sites =

seek call sites(call containers)
12 foreach call site ∈ call sites do
13 AnalysisDeque.add((context, call site))
14 end
15 end
16 end
17 return G = (V,E)

We clarify a few aspects. First, similar to Preproces-
sor, Generator is also an abstract class. It requires two
abstract methods to be implemented: seek_call_sites
and resolve. seek_call_sites finds new call sites
to be added to the analysis from call containers. resolve
determines the fully quantified function(s) that a call site
corresponds to.

The generation algorithm keeps the following two runtime
structures:

1) AnalysisDeque: An explicit deque is used to keep
track of the call sites to resolve. By default, the algo-
rithm automatically adds call sites contained by meth-
ods. This explicitness, however, allows users to add call
sites contained by non-method call containers.

2) context: Caches data-flow and points-to analysis re-
sults required by VTA and k-CFA.

Our CHA generator must implement seek_call_sites
and resolve. Our generator seeks call sites by
returning all instances of method_invocation and
object_creation_expression nodes within call
containers.

Implementing resolve requires more sophistication. We
show just the logic to resolve a method_invocation
node, which looks like receiver.method(...). The
receiver may be of any expression. In JDK8, we found that
implicit/explicit this and identifiers make up 88% of the re-
ceivers while field_access and method_invocation



Soot OSA SPOON JCG WALA JDT NR NR-ALL SCHA SCHA-ALL
Soot 34574 44.6% 41.3% 42.4% 16.4% 44.0% 59.8% 69.5% 1.7% 25.5%
OSA 45.8% 33685 45.5% 51.1% 12.8% 56.5% 56.4% 65.0% 1.4% 25.5%
SPOON 87.7% 94.3% 16263 82.7% 27.0% 92.2% 64.6% 76.6% 2.5% 40.1%
JCG 64.3% 75.4% 58.9% 22834 17.8% 74.4% 53.8% 62.1% 2.1% 35.7%
WALA 100.0% 75.8% 77.4% 71.5% 5668 71.3% 66.2% 73.3% 6.1% 41.1%
JDT 78.1% 97.8% 77.1% 87.3% 20.8% 19463 70.5% 81.9% 2.1% 33.6%
NR 5.4% 4.9% 2.7% 3.2% 1.0% 3.6% 384315 100.0% 0.2% 3.5%
NR-ALL 5.5% 5.0% 2.9% 3.2% 1.0% 3.7% 88.0% 436726 0.2% 3.4%
SCHA 18.0% 14.1% 12.5% 14.6% 10.7% 12.5% 23.6% 24.4% 3242 100.0%
SCHA-ALL 14.5% 14.2% 10.8% 13.4% 3.8% 10.8% 21.9% 24.7% 5.3% 60677

TABLE II: Common calls of the ArgoUML project between 6 existing generators and 4 of our generators.

nodes only made up 8%. A call site whose receiver is of type
field_access will look like a.b.c, where the receiver is
a.b.; a call site whose receiver is a method invocation node
looks like a.b().c, where the receiver is a.b().

In all of these scenarios, we must first resolve the full type
of the identifier a. We implement this by walking upwards
from the identifier to find where it was introduced. We scan
the declaration statements, method arguments, and class fields.
However, we can only expect to retrieve the shorthand type
from these declarations because Java supports type aliasing.
To resolve the full type, we build a list of possible alias to
full type mappings by analyzing the import statements and
utilizing package_importables. Then, we determine the
full type by querying the aliased type against the built list.
If the query yields no results, the aliased type is probably
defined by the libraries, which the application-only scope
ignores. Once the receiver’s full type is resolved, we address
polymorphism by identifying the type’s subclasses through a
query to class_cache.

With the full type of the identifier a determined, call sites
like a.b() can be easily resolved. To resolve scenarios like
a.b.c() and a.b().c, we just have to utilize the lookup
structures generated by the Preprocessor a bit more.

We have covered the high level overview of building a
Java CHA generator with ACER. Evidently, much of the user
implemented logic deals with type resolution, which comes
with freely with IR.

IV. EXAMPLES AND EVALUATION

Under ACER, we implemented a NR generator and a SCHA
generator. We elaborate on our SCHA algorithm.

SCHA (Simple Class Hierarchy Analysis)

Our SCHA generator is simple in comparison to the hy-
pothetical CHA generator of section III. First, our generator
uses aliases, so collisions will occur if two methods belong
to classes of the same alias and have the same name and
number of arguments. Second, only call sites with a simple
identifier receiver like a.b() and those with no callers are
considered. Call sites with complex receivers are ignored (e.g.,
(builder.make_class()).method().

Evaluation

Our evaluation goals revolve around measuring framework-
centric metrics, e.g., speed and lines-of-code. However, to

measure our speed performances against existing tools, we
cannot directly compare the call graph generation times. Speed
depends on multiple factors, the most important being the
preciseness of the algorithm. Given that the algorithms of
the evaluated generators are quite different, we first present
edge comparisons across all tools. This establishes a baseline
level of precision that serves to validate the more important
measurements.

We borrow the edge results of six open-source Java gener-
ators from Jász et al. [24]. They evaluated existing tools on
ArgoUML, a sufficiently large, UML diagramming application
written in Java. They thoughtfully performed full-software, in-
between, and application-only analysis. Because our genera-
tors are application-only, we care only for the application-only
findings, which are shown in Table II.

The cells along the diagonal represents the number of edges
the corresponding generator created. The other cells represents
the ratio of the edges discovered by the row generator that were
also discovered by the column generator. For example, 44.6%
of Soot’s edges were also discovered by OSA. The last four
rows and columns show the edge performances of our tool.
The “ALL” suffix signifies that a generator considers the entry
points to be the set of all methods.

As expected, the NR generators have high recall but low
precision — they contain, on average, 52.1% of the edges
that other tools generated. But other tools, on average, only
contain 3% of the edges NR generated. Conversely, the SCHA
generators have higher precision but lower recall.

Generating more edges seems to correlate with a faster
and sounder algorithm while generating less edges seem to
imply a slower and more precise algorithm. This observation
is indeed true for our sound NR tool, which had the most
edges, and WALA, which ran an approximation of the APA
algorithm. In reality, this is not always the case. The difference
in choosing which language features to handle drastically
change the edges. In the case the SCHA tool, it generated the
least edges due to its simplicity (e.g., only resolving call sites
with identifier receivers) and not its algorithm rigor (which
falls behind WALA’s APA and Soot’s CHA).

We admit that further detailed analysis on why the edges
differ should be conducted. But, with this anchor set, we now
turn to discuss speed performances.

We evaluated the time it took for JCG, WALA (in CHA
mode), NR-all, and SCHA-all to operate on JDK8’s jar, on



Generator Preprocessing Time Generation Time
NR 00:32 01:23
SCHA 00:59 02:29
JCG 20:00 00:07
WALA 20:00 01:50

TABLE III: Generator speeds in mm:ss

a machine with a Intel® Core™ i7-11800H processor. We
zoomed in on JCG because it most closely resembles NR-ALL
in terms of straightforwardness and WALA (in CHA mode
instead of APA) because it most closely resembles SCHA. At
last, we consider all methods as entry points because JDK8 is
a library and does not have main methods.

Per the table, other tools outperform our tools in terms of
generation speed. But, this can be reasonably attributed to the
fact that IR has already fully quantified all entities. For a fair
comparison, we must consider the preprocessing time it took
to build the heavy JDK8 jar, which takes 20 minutes. For our
tools, we attribute preprocessing time to the Preprocessor and
generation time to the Generator. With the preprocessing time
considered, our tools perform much faster.

At last, we note that the framework itself, including utilities,
contains 800 lines of code in Python. The NR generator was
written in only 100 lines and the SCHA took 300 lines.
The additional lines in SCHA went towards generating class
hierarchy and resolving the full type of identifiers. We actually
wrote two incomplete CHA generators for Java and Python
that attempted to resolve all expression types. They came
out to around 3K lines — most lines going towards type
resolution. Thus, we plan to research further in designing
language-agnostic abstractions for assisting entity resolution.
As mentioned before, the ideal solution is a source format that
is fully quantified wherever possible, resilient to errors, and
does not require full compilation and dependency building.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented ACER, an AST-based call graph
generator framework. First, we introduced the parameters of
call graph generators and highlighted implementation chal-
lenges. Then, we discussed the process in building a hypo-
thetical CHA generator under ACER. At last, we evaluated
our Java NR and SCHA generators against existing, IR-based
Java generators.

Here is a list of items we plan to address in our future work:
1) Conduct an in-depth analysis on edge outputs of differ-

ent generators on JDK8. Build a table similar to Table II
and attribute edges variations to specific design choices.

2) Build abstractions to assist name resolution and full
quantification.

3) Build generators for other languages to demonstrate the
multilinguality of the framework.

VI. ACKNOWLEDGEMENTS

We would like to thank the CSci 435 students Vinny Allegra,
Daniel Lee, Aamir Mohammed, and Chas Rinne from Fall

2022 for contributing to the initial version of the project. This
research has been supported in part by the NSF CCF-2311469,
CNS-2132281, CCF-2007246, and CCF-1955853. We also
acknowledge support from Cisco Systems. Any opinions,
findings, and conclusions expressed herein are the authors’
and do not necessarily reflect those of the sponsors.

REFERENCES

[1] S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[2] V. Prokhorenko, K.-K. R. Choo, and H. Ashman, “Web application
protection techniques,” vol. 60, no. C, p. 95–112, jan 2016. [Online].
Available: https://doi.org/10.1016/j.jnca.2015.11.017

[3] J. M. Spivey, “Fast, accurate call graph profiling,” Softw: Pract. Exper.,
vol. 34, pp. 249–264, 2004.

[4] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip,
“Tool-supported refactoring for javascript,” SIGPLAN Not., vol. 46,
no. 10, p. 119–138, oct 2011. [Online]. Available: https://doi.org/10.
1145/2076021.2048078

[5] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Efficient
construction of approximate call graphs for javascript ide services,” 2013
35th International Conference on Software Engineering (ICSE), 2013.

[6] D. Grove and C. Chambers, “A framework for call graph construction
algorithms,” ACM Trans. Program. Lang. Syst., vol. 23, no. 6, p.
685–746, nov 2001. [Online]. Available: https://doi.org/10.1145/506315.
506316

[7] F. Tip and J. Palsberg, “scalable propagation-based call graph construc-
tion algorithms,” SIGPLAN Not., vol. 35, pp. 281–293, 2000.

[8] L. O. Andersen and P. Lee, “Program analysis and specialization
for the c programming language,” 2005. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:20876553

[9] M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini, “Call
graph construction for java libraries,” Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2016.

[10] K. Ali and O. Lhoták, “application-only call graph construction,” pp.
688–712, 2012.

[11] “Doxygen,” accessed: 2023-07-05. [Online]. Available: http://www.
doxygen.nl/

[12] A. F. N. Koknat, “callgraph,” 2023, gitHub repository. [Online].
Available: https://github.com/koknat/callGraph

[13] D. Fraser, “Pyan,” 2021, gitHub repository. [Online]. Available:
https://github.com/davidfraser/pyan

[14] V. Salis, T. Sotiropoulos, P. Louridas, D. Spinellis, and D. Mitropoulos,
“Pycg: practical call graph generation in python,” 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021.

[15] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java
Virtual Machine Specification, Java SE 8 Edition. Pearson
Education, 2014. [Online]. Available: https://books.google.com/books?
id=0o-AAwAAQBAJ

[16] L. Project. (2023) Clang: a c language family frontend for llvm.
[Online]. Available: https://clang.llvm.org/

[17] M. Corporation. (2023) Roslyn (.net compiler platform). [Online].
Available: https://github.com/dotnet/roslyn

[18] F. S. Foundation. (2023) Gnu compiler collection. [Online]. Available:
https://gcc.gnu.org/

[19] IBM Corporation, “WALA - T.J. Watson libraries for analysis,” https:
//github.com/wala/WALA, 2019.

[20] Sable Research Group, “Soot: A java bytecode optimization framework,”
https://soot-oss.github.io/soot/, 2023.

[21] K. Ali, X. Lai, Z. Luo, O. Lhotak, J. Dolby, and F. Tip, “A study of
call graph construction for jvm-hosted languages,” Ieee Transactions on
Software Engineering, vol. 47, pp. 2644–2666, 2021.

[22] T. sitter Contributors, “Tree-sitter: An incremental parsing system
for programming tools,” 2021. [Online]. Available: https://github.com/
tree-sitter/tree-sitter

[23] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 6, p. 1811–1841, nov
1994. [Online]. Available: https://doi.org/10.1145/197320.197383

[24] J. Jász, I. Siket, E. Pengő, Z. Ságodi, and R. Ferenc, “systematic
comparison of six open-source java call graph construction tools,” 2019.

https://doi.org/10.1016/j.jnca.2015.11.017
https://doi.org/10.1145/2076021.2048078
https://doi.org/10.1145/2076021.2048078
https://doi.org/10.1145/506315.506316
https://doi.org/10.1145/506315.506316
https://api.semanticscholar.org/CorpusID:20876553
https://api.semanticscholar.org/CorpusID:20876553
http://www.doxygen.nl/
http://www.doxygen.nl/
https://github.com/koknat/callGraph
https://github.com/davidfraser/pyan
https://books.google.com/books?id=0o-AAwAAQBAJ
https://books.google.com/books?id=0o-AAwAAQBAJ
https://clang.llvm.org/
https://github.com/dotnet/roslyn
https://gcc.gnu.org/
https://github.com/wala/WALA
https://github.com/wala/WALA
https://soot-oss.github.io/soot/
https://github.com/tree-sitter/tree-sitter
https://github.com/tree-sitter/tree-sitter
https://doi.org/10.1145/197320.197383

	Introduction
	Background and Related work
	Algorithm
	Handling Language Features
	Scope of Analysis
	Ambiguity Problems

	Tool Description and Internals
	Examples and Evaluation
	Conclusion and Future Work
	Acknowledgements
	References

